Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Genesis ; 62(2): e23597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590121

RESUMO

Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.


Assuntos
Bulbo Olfatório , Órgão Vomeronasal , Camundongos , Animais , Bulbo Olfatório/fisiologia , Células Receptoras Sensoriais/metabolismo , Órgão Vomeronasal/metabolismo
2.
Dev Neurobiol ; 84(2): 59-73, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439531

RESUMO

In contrast to other S100 protein members, the function of S100 calcium-binding protein Z (S100Z) remains largely uncharacterized. It is expressed in the olfactory epithelium of fish, and it is closely associated with the vomeronasal organ (VNO) in mammals. In this study, we analyzed the expression pattern of S100Z in the olfactory system of the anuran amphibian Xenopus laevis. Using immunohistochemistry in whole mount and slice preparations of the larval olfactory system, we found exclusive S100Z expression in a subpopulation of olfactory receptor neurons (ORNs) of the main olfactory epithelium (MOE). S100Z expression was not co-localized with TP63 and cytokeratin type II, ruling out basal cell and supporting cell identity. The distribution of S100Z-expressing ORNs was laterally biased, and their average number was significantly increased in the lateral half of the olfactory epithelium. The axons of S100Z-positive neurons projected exclusively into the lateral and intermediate glomerular clusters of the main olfactory bulb (OB). Even after metamorphic restructuring of the olfactory system, S100Z expression was restricted to a neuronal subpopulation of the MOE, which was then located in the newly formed middle cavity. An axonal projection into the ventro-lateral OB persisted also in postmetamorphic frogs. In summary, S100Z is exclusively associated with the main olfactory system in the amphibian Xenopus and not with the VNO as in mammals, despite the presence of a separate accessory olfactory system in both classes.


Assuntos
Neurônios Receptores Olfatórios , Órgão Vomeronasal , Animais , Neurônios Receptores Olfatórios/metabolismo , Xenopus laevis/metabolismo , Mucosa Olfatória , Bulbo Olfatório/metabolismo , Órgão Vomeronasal/metabolismo , Proteínas S100/metabolismo , Mamíferos/metabolismo
3.
Cell Tissue Res ; 396(1): 85-94, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388750

RESUMO

Activating transcription factor 5 (ATF5) is a transcription factor that belongs to the cAMP-response element-binding protein/ATF family and is essential for the differentiation and survival of sensory neurons in mouse olfactory organs. However, transcriptional target genes for ATF5 have yet to be identified. In the present study, chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) experiments were performed to verify ATF5 target genes in the main olfactory epithelium and vomeronasal organ in the postnatal pups. ChIP-qPCR was conducted using hemagglutinin (HA)-tagged ATF5 knock-in olfactory organs. The results obtained demonstrated that ATF5-HA fusion proteins bound to the CCAAT/enhancer-binding protein-ATF response element (CARE) site in the enhancer region of nescient helix-loop-helix 1 (Nhlh1), a transcription factor expressed in differentiating olfactory and vomeronasal sensory neurons. Nhlh1 mRNA expression was downregulated in ATF5-deficient (ATF5-/-) olfactory organs. The LIM/homeobox protein transcription factor Lhx2 co-localized with ATF5 in the nuclei of olfactory and vomeronasal sensory neurons and bound to the homeodomain site proximal to the CARE site in the Nhlh1 gene. The CARE region of the Nhlh1 gene was enriched by the active enhancer marker, acetyl-histone H3 (Lys27). The present study identified Nhlh1 as a novel target gene for ATF5 in murine olfactory organs. ATF5 may upregulate Nhlh1 expression in concert with Lhx2, thereby promoting the differentiation of olfactory and vomeronasal sensory neurons.


Assuntos
Fatores Ativadores da Transcrição , Órgão Vomeronasal , Animais , Camundongos , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT , Proteínas com Homeodomínio LIM/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Órgão Vomeronasal/metabolismo
4.
J Neurophysiol ; 131(3): 455-471, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264787

RESUMO

Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.


Assuntos
Neurônios Receptores Olfatórios , Órgão Vomeronasal , Neurônios Receptores Olfatórios/fisiologia , Potenciais de Ação , Canais Iônicos/metabolismo , Feromônios/metabolismo , Órgão Vomeronasal/metabolismo
5.
J Morphol ; 284(11): e21655, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37856277

RESUMO

Many tetrapod vertebrates have two distinct olfactory organs, the olfactory epithelium (OE) and vomeronasal organ (VNO). In turtles, the olfactory organ consists of two types of sensory epithelia, the upper chamber epithelium (UCE; corresponding to the OE) and the lower chamber epithelium (LCE; corresponding to the VNO). In many turtle species, the UCE contains ciliated olfactory receptor cells (ORCs) and the LCE contains microvillous ORCs. To date, several transcription factors involved in the development of the OE and VNO have been identified in mammals. Fez family zinc-finger protein 1 and 2 (Fezf1 and 2) are expressed in the OE and VNO, respectively, of mouse embryos, and are involved in the development and maintenance of ORCs. B-cell lymphoma/leukemia 11B (Bcl11b) is expressed in the mouse embryo OE except the dorsomedial parts of the nasal cavity, and regulates the expression of odorant receptors in the ORCs. In this study, we examined the expression of Fezf1, Fezf2, and Bcl11b in the olfactory organs of embryos in three turtle species, Pelodiscus sinensis, Trachemys scripta elegans, and Centrochelys sulcata, to evaluate their involvement in the development of reptile olfactory organs. In all three turtle species, Bcl11b was expressed in the UCE, Fezf2 in the LCE, and Fezf1 in both the UCE and LCE. These results imply that the roles of the transcription factors Fezf1, Fezf2, and Bcl11b in olfactory organ development are conserved among mammals and turtles.


Assuntos
Mucosa Olfatória , Fatores de Transcrição , Proteínas Supressoras de Tumor , Tartarugas , Órgão Vomeronasal , Animais , Mucosa Olfatória/inervação , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Tartarugas/genética , Tartarugas/metabolismo , Órgão Vomeronasal/inervação , Órgão Vomeronasal/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445898

RESUMO

In numerous animals, one essential chemosensory organ that detects chemical signals is the vomeronasal organ (VNO), which is involved in species-specific behaviors, including social and sexual behaviors. The purpose of this study is to investigate the mechanism underlying the processing of chemosensory cues in semi-aquatic mammals using muskrats as the animal model. Muskrat (Ondatra zibethicus) has a sensitive VNO system that activates seasonal breeding behaviors through receiving specific substances, including pheromones and hormones. Vomeronasal organ receptor type 1 (V1R) and type 2 (V2R) and estrogen receptor α and ß (ERα and ERß) were found in sensory epithelial cells, non-sensory epithelial cells and lamina propria cells of the female muskrats' VNO. V2R and ERα mRNA levels in the VNO during the breeding period declined sharply, in comparison to those during the non-breeding period, while V1R and ERß mRNA levels were detected reversely. Additionally, transcriptomic study in the VNO identified that differently expressed genes might be related to estrogen signal and metabolic pathways. These findings suggested that the seasonal structural and functional changes in the VNO of female muskrats with different reproductive status and estrogen was regulated through binding to ERα and ERß in the female muskrats' VNO.


Assuntos
Receptor alfa de Estrogênio , Órgão Vomeronasal , Animais , Feminino , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Sinais (Psicologia) , Mamíferos/metabolismo , Estrogênios/metabolismo , Órgão Vomeronasal/metabolismo , Arvicolinae
7.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36971115

RESUMO

Cartilaginous fishes are renowned for a keen sense of smell, a reputation based on behavioral observations and supported by the presence of large and morphologically complex olfactory organs. At the molecular level, genes belonging to the four families coding for most olfactory chemosensory receptors in other vertebrates have been identified in a chimera and a shark, but it was unknown whether they actually code for olfactory receptors in these species. Here, we describe the evolutionary dynamics of these gene families in cartilaginous fishes using genomes of a chimera, a skate, a sawfish, and eight sharks. The number of putative OR, TAAR, and V1R/ORA receptors is very low and stable, whereas the number of putative V2R/OlfC receptors is higher and much more dynamic. In the catshark Scyliorhinus canicula, we show that many V2R/OlfC receptors are expressed in the olfactory epithelium in the sparsely distributed pattern characteristic for olfactory receptors. In contrast, the other three vertebrate olfactory receptor families are either not expressed (OR) or only represented with a single receptor (V1R/ORA and TAAR). The complete overlap of markers of microvillous olfactory sensory neurons with pan-neuronal marker HuC in the olfactory organ suggests the same cell-type specificity of V2R/OlfC expression as for bony fishes, that is, in microvillous neurons. The relatively low number of olfactory receptors in cartilaginous fishes compared with bony fishes could be the result of an ancient and constant selection in favor of a high olfactory sensitivity at the expense of a high discrimination capability.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Tubarões , Órgão Vomeronasal , Animais , Receptores Odorantes/metabolismo , Olfato/fisiologia , Órgão Vomeronasal/metabolismo , Tubarões/genética , Tubarões/metabolismo , Filogenia , Vertebrados/genética , Peixes/genética
8.
J Comp Neurol ; 531(1): 116-131, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36161277

RESUMO

Lungfish are the fish related most closely to tetrapods. The olfactory organ of lungfish contains two distinct sensory epithelia: the lamellar olfactory epithelium (OE) and the recess epithelium (RecE). Based on their ultrastructural and histological characteristics, the lamellar OE and the RecE are considered to correspond respectively to the teleost OE and a primitive vomeronasal organ (VNO). In tetrapods, the OE and VNO have been shown to express different families of olfactory receptors; for example, in mammals, the OE expresses odorant receptors and trace amine-associated receptors, while the VNO expresses type 1 (V1Rs) and type 2 (V2Rs) vomeronasal receptors. In the present study, we examined the expression of V1Rs in the olfactory organs of two African lungfish, Protopterus annectens and Protopterus amphibius. RNA sequencing and phylogenetic analyses identified 29 V1R genes in P. annectens and 50 V1R genes in P. amphibius. Most V1Rs identified in these lungfish were classified as the tetrapod-type V1Rs initially found in tetrapods and distinct from fish-type V1Rs. In teleost, which all lack a VNO, all olfactory receptors are expressed in the OE, while in Xenopus V1Rs are expressed exclusively in the OE, and not in the VNO. In situ hybridization analysis indicated that lungfish V1Rs were expressed mainly in the lamellar OE and rarely in the RecE. These results imply that V1R expression in lungfish represents an intermediate step toward the complete segregation of V1R expression between the OE and VNO, reflecting the phylogenetic position of lungfish between teleosts and amphibians.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Órgão Vomeronasal , Animais , Receptores Odorantes/genética , Filogenia , Órgão Vomeronasal/metabolismo , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Peixes , Mamíferos
9.
Elife ; 112022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111787

RESUMO

Neuronal identity dictates the position in an epithelium, and the ability to detect, process, and transmit specific signals to specified targets. Transcription factors (TFs) determine cellular identity via direct modulation of genetic transcription and recruiting chromatin modifiers. However, our understanding of the mechanisms that define neuronal identity and their magnitude remain a critical barrier to elucidate the etiology of congenital and neurodegenerative disorders. The rodent vomeronasal organ provides a unique system to examine in detail the molecular mechanisms underlying the differentiation and maturation of chemosensory neurons. Here, we demonstrated that the identity of postmitotic/maturing vomeronasal sensory neurons (VSNs), and vomeronasal-dependent behaviors can be reprogrammed through the rescue of Tfap2e/AP-2ε expression in the Tfap2eNull mice, and partially reprogrammed by inducing ectopic Tfap2e expression in mature apical VSNs. We suggest that the TF Tfap2e can reprogram VSNs bypassing cellular plasticity restrictions, and that it directly controls the expression of batteries of vomeronasal genes.


Assuntos
Órgão Vomeronasal , Animais , Cromatina/metabolismo , Camundongos , Camundongos Knockout , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Órgão Vomeronasal/metabolismo
10.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781337

RESUMO

The ability of terrestrial vertebrates to find food and mating partners, and to avoid predators, relies on the detection of chemosensory information. Semiochemicals responsible for social and sexual behaviors are detected by chemosensory neurons of the vomeronasal organ (VNO), which transmits information to the accessory olfactory bulb. The vomeronasal sensory epithelium of most mammalian species contains a uniform vomeronasal system; however, rodents and marsupials have developed a more complex binary vomeronasal system, containing vomeronasal sensory neurons (VSNs) expressing receptors of either the V1R or V2R family. In rodents, V1R/apical and V2R/basal VSNs originate from a common pool of progenitors. Using single cell RNA-sequencing, we identified differential expression of Notch1 receptor and Dll4 ligand between the neuronal precursors at the VSN differentiation dichotomy. Our experiments show that Notch signaling is required for effective differentiation of V2R/basal VSNs. In fact, Notch1 loss of function in neuronal progenitors diverts them to the V1R/apical fate, whereas Notch1 gain of function redirects precursors to V2R/basal. Our results indicate that Notch signaling plays a pivotal role in triggering the binary differentiation dichotomy in the VNO of rodents.


Assuntos
Roedores , Órgão Vomeronasal , Animais , Diferenciação Celular/genética , Bulbo Olfatório/metabolismo , Células Receptoras Sensoriais/metabolismo , Órgão Vomeronasal/metabolismo
11.
Tissue Cell ; 77: 101863, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35797816

RESUMO

Artiodactyl livestock animals have a vomeronasal system that detects pheromones. Vomeronasal receptors comprise type 1 (V1R) coupled with G protein α-i2 (Gαi2) and type 2 (V2R) coupled with G protein α-o (Gαo). Laboratory rodents have two segregated V1R and V2R pathways that reach separately to the accessory olfactory bulb (AOB). In contrast, the AOBs of goats and sheep are entirely positive for Gαi2, indicating that they have only the V1R pathway. However, we detected a few V2R genes in the genome of cattle, goats, sheep and pigs by genome assembly. Thus, we immunohistochemically analyzed the AOBs of cattle and pigs to confirm which type of the vomeronasal system is present in artiodactyl livestock species. The glomerular layer of the AOB in cattle and pigs was entirely positive for anti-Gαi2 and weakly positive for anti-Gαo, as in the V1R uniform type of vomeronasal system in other mammal species. These findings indicated that artiodactyl livestock species have a uniform type of vomeronasal system composing the V1R pathway. Therefore, caution is advised when extrapolating knowledge of laboratory rodents with two vomeronasal pathways to livestock animals that have one.


Assuntos
Órgão Vomeronasal , Animais , Bovinos , Proteínas de Ligação ao GTP/metabolismo , Cabras/metabolismo , Gado/metabolismo , Bulbo Olfatório/metabolismo , Ovinos , Suínos , Órgão Vomeronasal/metabolismo
12.
Prion ; 16(1): 40-57, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35634740

RESUMO

Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.


Assuntos
Cervos , Príons , Órgão Vomeronasal , Doença de Emaciação Crônica , Animais , Cervos/metabolismo , Equidae/metabolismo , Feminino , Masculino , Proteínas Priônicas , Príons/metabolismo , Glândulas Odoríferas/metabolismo , Órgão Vomeronasal/metabolismo , Doença de Emaciação Crônica/metabolismo
13.
Nat Commun ; 13(1): 556, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115521

RESUMO

The vomeronasal system plays an essential role in sensing various environmental chemical cues. Here we show that mice exposed to blood and, consequently, hemoglobin results in the activation of vomeronasal sensory neurons expressing a specific vomeronasal G protein-coupled receptor, Vmn2r88, which is mediated by the interaction site, Gly17, on hemoglobin. The hemoglobin signal reaches the medial amygdala (MeA) in both male and female mice. However, it activates the dorsal part of ventromedial hypothalamus (VMHd) only in lactating female mice. As a result, in lactating mothers, hemoglobin enhances digging and rearing behavior. Manipulation of steroidogenic factor 1 (SF1)-expressing neurons in the VMHd is sufficient to induce the hemoglobin-mediated behaviors. Our results suggest that the oxygen-carrier hemoglobin plays a role as a chemosensory signal, eliciting behavioral responses in mice in a state-dependent fashion.


Assuntos
Tonsila do Cerebelo/metabolismo , Biomarcadores/sangue , Hemoglobinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Feminino , Hemoglobinas/genética , Hibridização In Situ/métodos , Lactação , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
14.
J Comp Neurol ; 530(3): 648-655, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34415057

RESUMO

The accessory olfactory bulb (AOB) plays a critical role in classifying pheromonal signals. Here we identify two previously undescribed sources of aromatase signaling in the AOB: (1) a population of aromatase-expressing neurons in the AOB itself; (2) a tract of aromatase-expressing axons which originate in the ventral medial amygdala (MEA) and terminate in the AOB. Using a retrograde tracer in conjunction with a transgenic strategy to label aromatase-expressing neurons throughout the brain, we found that a single contiguous population of neurons in the ventral MEA provides the only significant feedback by aromatase-expressing neurons to the AOB. This population expresses the estrogen receptor alpha (ERα) and displayed anatomical sex differences in the number of neurons (higher in male mice) and the size of cell bodies (larger in females). Given the previously established relationship between aromatase expression, estrogen signaling, and the function of sexually dimorphic circuits, we suggest that this feedback population is well-positioned to provide neuroendocrine feedback to modulate sensory processing of social stimuli in the AOB.


Assuntos
Bulbo Olfatório , Órgão Vomeronasal , Tonsila do Cerebelo/metabolismo , Animais , Aromatase/metabolismo , Retroalimentação , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Órgão Vomeronasal/metabolismo
15.
Cell Rep ; 37(5): 109940, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731636

RESUMO

Projections from sensory neurons of olfactory systems coalesce into glomeruli in the brain. The Kirrel receptors are believed to homodimerize via their ectodomains and help separate sensory neuron axons into Kirrel2- or Kirrel3-expressing glomeruli. Here, we present the crystal structures of homodimeric Kirrel receptors and show that the closely related Kirrel2 and Kirrel3 have evolved specific sets of polar and hydrophobic interactions, respectively, disallowing heterodimerization while preserving homodimerization, likely resulting in proper segregation and coalescence of Kirrel-expressing axons into glomeruli. We show that the dimerization interface at the N-terminal immunoglobulin (IG) domains is necessary and sufficient to create homodimers and fail to find evidence for a secondary interaction site in Kirrel ectodomains. Furthermore, we show that abolishing dimerization of Kirrel3 in vivo leads to improper formation of glomeruli in the mouse accessory olfactory bulb as observed in Kirrel3-/- animals. Our results provide evidence for Kirrel3 homodimerization controlling axonal coalescence.


Assuntos
Axônios/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Olfato , Órgão Vomeronasal/metabolismo , Animais , Evolução Molecular , Células HEK293 , Humanos , Imunoglobulinas/genética , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Mutação , Odorantes , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores Odorantes/genética , Transdução de Sinais , Relação Estrutura-Atividade
16.
Viruses ; 13(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452517

RESUMO

Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, suffer from respiratory and non-respiratory symptoms. Among these symptoms, the loss of smell has attracted considerable attention. The objectives of this study were to determine which cells are infected, what happens in the olfactory system after viral infection, and how these pathologic changes contribute to olfactory loss. For this purpose, Syrian golden hamsters were used. First, we verified the olfactory structures in the nasal cavity of Syrian golden hamsters, namely the main olfactory epithelium, the vomeronasal organ, and their cellular components. Second, we found angiotensin-converting enzyme 2 expression, a receptor protein of SARS-CoV-2, in both structures and infections of supporting, microvillar, and solitary chemosensory cells. Third, we observed pathological changes in the infected epithelium, including reduced thickness of the mucus layer, detached epithelia, indistinct layers of epithelia, infiltration of inflammatory cells, and apoptotic cells in the overall layers. We concluded that a structurally and functionally altered microenvironment influences olfactory function. We observed the regeneration of the damaged epithelium, and found multilayers of basal cells, indicating that they were activated and proliferating to reconstitute the injured epithelium.


Assuntos
COVID-19/virologia , Células Quimiorreceptoras/virologia , Mucosa Olfatória/virologia , SARS-CoV-2 , Órgão Vomeronasal/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , Células Quimiorreceptoras/patologia , Masculino , Mesocricetus , Cavidade Nasal/patologia , Cavidade Nasal/virologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Neurônios Receptores Olfatórios/metabolismo , Neurônios Receptores Olfatórios/patologia , Neurônios Receptores Olfatórios/virologia , Receptores de Coronavírus/metabolismo , Regeneração , SARS-CoV-2/isolamento & purificação , Órgão Vomeronasal/metabolismo , Órgão Vomeronasal/patologia
17.
Genomics ; 113(4): 2240-2252, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015461

RESUMO

The vomeronasal organ (VNO) is a chemosensory organ specialized in pheromone detection that shows a broad morphofunctional and genomic diversity among mammals. However, its expression patterns have only been well-characterized in mice. Here, we provide the first comprehensive RNA sequencing study of the rabbit VNO across gender and sexual maturation stages. We characterized the VNO transcriptome, updating the number and expression of the two main vomeronasal receptor families, including 128 V1Rs and 67 V2Rs. Further, we defined the expression of formyl-peptide receptor and transient receptor potential channel families, both known to have specific roles in the VNO. Several sex hormone-related pathways were consistently enriched in the VNO, highlighting the relevance of this organ in reproduction. Moreover, whereas juvenile and adult VNOs showed significant transcriptome differences, male and female did not. Overall, these results contribute to understand the genomic basis of behavioural responses mediated by the VNO in a non-rodent model.


Assuntos
Órgão Vomeronasal , Animais , Feminino , Masculino , Mamíferos/genética , Camundongos , Feromônios , Coelhos , Receptores de Formil Peptídeo/genética , Transcriptoma , Órgão Vomeronasal/metabolismo
18.
Sci Rep ; 11(1): 8865, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893372

RESUMO

Fish chemosensory olfactory receptors allow them to detect a wide range of water-soluble chemicals, that mediate fundamental behaviours. Zebrafish possess a well-developed sense of smell which governs reproduction, appetite, and fear responses. The spatial organization of functional properties within the olfactory epithelium and bulb are comparable to those of mammals, making this species suitable for studies of olfactory differentiation and regeneration and neuronal representation of olfactory information. The advent of genomic techniques has been decisive for the discovery of specific olfactory cell types and the identification of cell populations expressing vomeronasal receptors. These advances have marched ahead of morphological and neurochemical studies. This study aims to fill the existing gap in specific histological, lectin-histochemical and immunohistochemical studies on the olfactory rosette and the olfactory bulb of the zebrafish. Tissue dissection and microdissection techniques were employed, followed by histological staining techniques, lectin-histochemical labelling (UEA, LEA, BSI-B4) and immunohistochemistry using antibodies against G proteins subunits αo and αi2, growth-associated protein-43, calbindin, calretinin, glial-fibrillary-acidic-protein and luteinizing-hormone-releasing-hormone. The results obtained enrich the available information on the neurochemical patterns of the zebrafish olfactory system, pointing to a greater complexity than the one currently considered, especially when taking into account the peculiarities of the nonsensory epithelium.


Assuntos
Lectinas/metabolismo , Mucosa Olfatória/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Imuno-Histoquímica , Peixe-Zebra/metabolismo
19.
Acta Histochem ; 123(2): 151684, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33517140

RESUMO

We examined the localization of olfactory marker protein (OMP), protein gene product9.5 (PGP9.5), and glycan diversity in the vomeronasal organ (VNO) of the Korean black goat (Capra hircus coreanae) during the prenatal and postnatal periods using immunohistochemistry and lectin histochemistry. In fetal and 1-day-old goats, OMP was occasionally identified in receptor cells of the VNO sensory epithelium, and PGP9.5 was localized in both the sensory and non-sensory epithelia. In VNO from adult goats, OMP was abundant in the sensory epithelium and scarce in single cells of the non-sensory epithelium. These results suggest that OMP production is initiated in the VNO sensory epithelium (VNE) during the fetal stage, and that its activity is increased in adult VNO receptor cells and solitary cells in the non-sensory epithelium (VNSE). Furthermore, the free borders of the sensory epithelia were positive for 7 lectins, and 6 lectins were moderately and/or highly abundant in receptor cells. Supporting and basal cells, and nerve bundles had similar expression patterns. In VNE, 7 lectins were observed in the free border, and 6 in ciliated, goblet, and basal cells, and in gland acini. The intensities of WGA, LCA, and PNA were high in VSE receptor cells, and the intensity of PNA was high in ciliated cells of the VNSE. The other 3 lectins showed similar patterns throughout development. Collectively, these results confirm that the Korean black goat VNO starts developing during the late fetal stages and differentiates further after birth.


Assuntos
Lectinas/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Cabras , Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/metabolismo , República da Coreia
20.
Domest Anim Endocrinol ; 74: 106535, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896801

RESUMO

Androstenone is the first mammalian steroidal pheromone to be identified. Pheromones are chemicals that animals use to communicate within a species. Pheromone detections are related to vomeronasal organ (VNO) and olfactory epithelium (OE) in mammals. Olfactory Receptor Family 7 Subfamily D Member 4 (OR7D4) is an odorant receptor that responds to androstenone. Several studies indicated that spray with androstenone changes behaviors of the boar and dogs. However, the expression of OR7D4 in VNO and OE was not reported in mammals except human. Thus, the main objectives of this study were to investigate the expression of OR7D4 in VNO and OE of horses. Tissue samples were collected from the VNO and nasal cavity of 6 thoroughbred horses. The presence of OR7D4 gene was investigated with reverse transcription-polymerase chain reaction. The expression of OR7D4 was determined using Western blot and immunofluorescence. As a result, the bands for OR7D4 were observed at approximately 462 bp. The protein band of OR7D4 of VNO and OE was detected at 38 kDa. Immunofluorescence result showed that the cilia and cytoplasm of olfactory receptor cells of VNO and nasal cavity tissues were immunolabeled with OR7D4 antibody. The intensity of OR7D4 protein bands in the ventral region of the ethmoidal concha tissues was not significantly different between mares and geldings. In conclusion, thoroughbred horses are capable of androstenone perception through OR7D4 expressed in the VNO and OE.


Assuntos
Cavalos/fisiologia , Mucosa Olfatória/metabolismo , Receptores Odorantes/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Reação em Cadeia da Polimerase/veterinária , Receptores Odorantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...